HTTP 5310 — Capstone project requirements 23S

Introduction

Developing the capstone project will require you to create a requirements document first and
the project itself second. The requirements document is the equivalent of an architect’s
blueprint: it is your plan for what you will execute before you do so. While you may be tempted
to develop the project without a plan — this is not allowed. The more detailed and complete
your requirements document the easier it will be to create your capstone project. These are the
main facets of your document:

Student Name:

Project Name:

Technology stack:

Project Purpose:

Features list:

Features Breakdown:
a. Narrative description
b. User stories
c. Database description (including entity map)
d. Dataflow diagrams
e. Wireframes

7. Project Timeline

ouhkwnNE

What you are creating are the instructions a developer would follow in order to build the
feature you are describing. It is the scope of the feature and includes all of the information a
developer would need to build it. What | have put in this handout are examples of the elements
of these descriptions to give you some guidance about what | expect.

One of the key purposes of this assignment is to help you develop a mental model of what a
content management system is. Mental models are a powerful set of expectations about how
we see things in the world. For example: an automobile. Automobiles are ubiquitous in our
world — there is no city in the world that has not spent untold billions of time, effort, and
wealth, in making their city automobile friendly. Some of us can drive an automobile — all of us
have been in one and have a good idea of how it works. Therefore, if | asked you to describe an
automobile you would be able to do a decent job of it: even if you don’t drive. The same is true
for this assignment and what we are doing in the program in general. However, most of you
have never done this kind of work before and so your mental model needs to be developed.
That is the purpose of you doing this assignment.

Student Name

This seems obvious — but make sure your name is on the project wherever it can be. This
includes file names, emails, the requirements document itself. There should be no doubt who
the author is.

Bernie Monette

HTTP 5310 — Capstone project requirements 23S

Project Name (and version)

This is more than Student X capstone project. It is the narrative and informative title for the
project. It is ok to be a bit flashy and exuberant with the project name: “Jasdeep’s Excellent Bixi
Bike Finder.” Or “Mohamed’s Amazing Vegan Recipe Builder.” It may happen that your
document will be revised before you implement it. If that is so — you will have to start adding
version numbers. So the file name might be — “sen-lui-requirements-v201-2023.docx” or
“jay-dave-http-capstone-v-2a-2002.docx”. You can pick your versioning pattern — but stick to just
one.

Technology Stack

What are you using to create your project? It could be anything — ASP.net using MVC. WordPress
using LAMP. The MERN stack. Take your pick but you have to declare it here. Similarly, if you are
incorporating third-party APIs, list them here.

Project Purpose
This is your project in plain English, something anyone could understand. Here you will describe
what the project is, who the project is for, the features it will have, and how it will work.

Features List
This will be a bullet-point list of the discrete capabilities your project will have. They will be
categorized into Must Have features, Should Have features, then, Nice-to-have features.

Following the list of features will be a detailed breakdown of each feature:

Narrative Description

Similar to the project purpose this is your feature in plain English. What are you building and
how will it work? How will the various users interact with your application? About 250 or so
words per separate feature.

User Stories
You will write out the user stories that will provide the means of showing what your features
will do for the different access levels of your users. User stories are a key element for knowing
what the user will be able to do with your feature. For example; a user story for a frequently
asked question feature would be:

“A logged in Admin user can add a frequently asked question.”
Or for a job application feature:

“A registered Volunteer can apply for a volunteer position.”

If we break these stories down, we can see what needs to be in place for them to work. In the
first story we have a “logged in admin user” so we will need a login system and a means of

Bernie Monette

HTTP 5310 — Capstone project requirements 23S

distinguishing different types of users. User permissions will also need to be in place. It is
important to identify the access “roles” that you will create for your user groups. The second
part “can add a frequently asked question” means that we have a form and a mechanism for
adding a question. This might mean a link in admin side that says something like “Add new” or
“Add new question”. HTML forms have fields of various types, validation, and code that interacts
with the server and the database.

In the second story we have a “Registered user” which means that users can register and
further confirms a mechanism for providing user rights and permissions. We can also infer a
form to submit an application as well as a means of reviewing applicants — this is based on the
word “apply”.

Remember too that all applications have to have CRUD capability. Each element of CRUD is a
user story. This section is also a good place to show what error and success messages you will
have for your feature. You do want to have these system messages in place before you start
programming. These messages are a key element of the user experience — we all know how
impossible it is to use a system with messages that are not easy to understand. We are building
features that our audience will want to use.

CRUD is a short form for Create, Read, Update, and Delete. These are the common database

functions that are the basis for content management. Every feature for every Web site in the
world will have some or all aspects of CRUD and yours will too. Your project is expected to be
able to at least manage CRUD operations in a way that you describe.

Database Description

In this section you will determine what information you intend to collect. You will also show the
tables you will create to support your feature. In each table you will begin to denote which data
fields are required by a setting of “not null”. This is in turn will be seen in the wireframes where
you will mark fields that are required.

Excel is probably the best means to show your database tables — but any clear means of
showing the tables, their connections, and their details is fine. Below is a possible schema for
the MVP for a CMS driven Web site.

Type

Primary_Key numeric
Foreign_key numeric
Nav_word text
Nav_page text

Secondary Nav

Primary_key Primary_key

Bernie Monette

HTTP 5310 — Capstone project requirements 23S

Foreign_key Foreign_key
Primary_parent Secondary_parent
Secondary_Page Tertiary_Page

Primary_key

Page_title

Page content

Parent

Primary_nav true/false

Dataflow Diagrams

We use these diagrams to explain how the feature will work. We model the interaction using
boxes, diamonds, and arrows. In one sense each box is a page, the diamonds describe decision
points, and the arrows show us the flow of the interaction. Each element of CRUD requires a
dataflow diagram — these will be for primarily administrative functions. Although if your feature
has public functions — then these will also require a dataflow. Within the dataflow you will also
add messages, either success, failure, or status, to show what the message says and how it is
triggered. Each dataflow diagram will start with a user story to show what the user will be able
to do and to act as the test for that part of the feature. If the user can do what the story says in
your application — then you know you are finished.

Take a look at the example below. This is a dataflow for the “create” element of CRUD for the
MVP. The user story tells you that this is for an admin user who has logged in. There may be
several routes to the “add new” functionality — this will depend on how you have managed the
admin dashboard for the CMS. The first step is “The new page form loads.” And from there the
admin user can enter the data they have prepared. At this point they click “Submit” (which is
something to be careful about — make sure you have determined what buttons are to be called
— so that you consistently use the same name.). Once the user clicks submit — then the data is
validated — this is represented by the diamond. A “yes” response means to keep moving while a
“No” requires the feature to take the user back — with an informative error message. Error
messages are in red while success messages are in green. The interaction finishes with the new
page displayed — or you can go back to the admin dashboard — whatever you have decided.

Bernie Monette

HTTP 5310 — Capstone project requirements

Alegged inuser can add a new page: version 1.0

The new page form
loads.

h 4

The admin user
enters the data in
the form and clicks
"Submit”

Write to database

Display

Display new page.

23S

Display error message

message.

This is the dataflow for Create — read, update, and delete would be next. Read is simple —and
doing a Read dataflow is not always needed — it depends on the interaction. Update would look
identical — except this time the admin user would be pulling in the form filled in with the data to
be edited. Delete is different — rather than a validation diamond you would have a confirmation
diamond — this would be a status message (in yellow) asking the user if they were sure they
wanted to delete the record. You can expect to have between 4 and 10 dataflow diagrams
depending on the feature you are describing. You may also consider that a responsive or an
accessible version might require a change in the interaction — if that is the case — dataflow
diagrams reflecting responsive (or accessible) interactions may be needed.

Bernie Monette

HTTP 5310 — Capstone project requirements 23S

Wireframes

From a broad perspective the point of these documents is to go from very loose “descriptions”
to very tight “requirements”: programming the feature itself is the most specific of all. Our
narrative description is in English and is not very specific. Then our database is logical but not
very useful in telling us how the feature will work: it is simply what data will be collected and
how. The dataflow diagrams require us to be more exact in how the feature will work, what
goes first, what goes next, and how error, success, and status will be handled. The wireframes
are our first attempt to show how the feature will look. The wireframes will show forms,
outputs, and views. The arrangement of the data from the database on the screen. They will
also show how errors will be displayed and what fields are required.

Logo Browser window

AN

Mavigation

Page content

A A

This is the Read view of a page of content.

Bernie Monette

HTTP 5310 — Capstone project requirements 23S

Loge Brownus wirdowe: sdmin virs
'\\x
bzl
'll Pt Ik Eithe P
Li
L)
Pt pagpe coavient huse
Pl o0 LAl
Sagbyerit Buitton

,r'[iwirrd | * = reguired field

This is the view of the HTML form that produces the Read view above. If the form is blank —
then it is a Create wireframe and if the form is filled — it is an update wireframe.

Loge Broranas window: sdminiew

N

"

Raregatien

] Errar message hers
i Pust ik tithe heve I

Puit page conient hese

Facyir o imt

Sashyiril bastbon
,l-‘[P = required field

Here is the same form with an error in place. You would include the error message in this
wireframe.

Bernie Monette

HTTP 5310 — Capstone project requirements 23S

Loge Browser window: admin view

Page titles

> Edit | Delete

Edit | Delete
Edit | Delete
Edit | Delete
Edit | Delete

Edit | Delete

CRUD links

This wireframe is a view of all the records available for the admin users. The gray boxes refer to
the page titles and the links on the right are “Edit” and “Delete”. Clicking on “Edit” retrieves the
data from the database and places it into the form. Clicking on “Delete” will trigger the delete
functionality. You could either load the page and then confirm deleting it or just show the
confirmation message.

Your wireframes will be more complex than these. You will build a home page wireframe. This
wireframe will hold most of the navigation and the layout for the Web site. Your features will fit
into the main wireframe.

Project Timeline (see provided document)

This document breaks down your plan on a weekly basis. What is your plan for execution across
a timeline? Seven weeks is not a lot of time - make sure there is room for deployment and
testing!

Bernie Monette

